(Following Paper ID and Roll No. to be filled in your Answer Book)											
PAPER ID: 1253	Roll No.										

B.Tech.

(SEM. III) ODD SEMESTER THEORY EXAMINATION 2013-14

BASICS OF SIGNALS AND SYSTEMS

Time: 3 Hours

Total Marks: 100

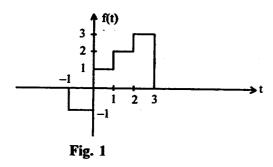
Note: Attempt questions from all Sections as per directions.

SECTION-A

1. Attempt all parts:

 $(2 \times 10 = 20)$

- (a) What is the difference between continuous-time and discrete-time signals?
- (b) Define unit impulse function $\delta(t)$.
- (c) Explain the analogy between mechanical and electrical systems.
- (d) What are the dirichlet conditions for the existence of Fourier Series ?
- (e) Find the Fourier transform of Unit-Step function.
- (f) Prove the time-shift property for Laplace transform.
- (g) Explain the applications of Laplace transform.


- (h) Explain the terms 'state' and 'state variables' with examples.
- (i) List the advantages of state space representation of Linear Systems.
- (j) Explain initial and Final Value Theorem for z-transform.

SECTION-B

2. Attempt three parts:

 $(3 \times 10 = 30)$

(a) Express the signal shown in Fig. 1 in terms of step signals.

(b) Draw the force-current analogy of the mechanical system shown in Fig. 2.

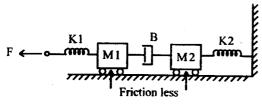


Fig. 2

(c) Find the Fourier transform of signal shown in Fig. 3.

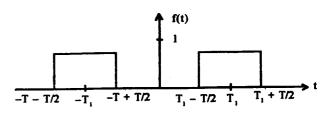


Fig. 3

(d) Find the inverse Laplace transform of following function:

$$F(s) = \frac{3s^2 + 8s + 6}{(s+2)(s^2 + 2s + 1)}$$

(e) Define the state transition matrix and its properties.

SECTION-C

Note: Attempt all questions from this Section. (10×5=50)

- 3. Attempt any two parts of the following:
 - (a) Distinguish between Periodic and Non-periodic Signals.

Find the time-period of the signal
$$x(t) = \cos \frac{\pi}{3} t + \sin \frac{\pi}{4} t$$
.

(b) Synthesize the signal (Fig. 4) using basic signals.

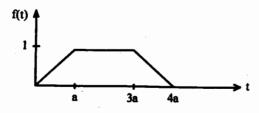


Fig. 4

- (c) What is a LT1 system? Check whether the system $y(t) = x^2(t)$ is a LT1 system.
- 4. Attempt any one part of the following:
 - (a) Determine the Fourier series for a square wave signal of unity magnitude using trigonometric series.
 - (b) Find the exponential Fourier series of the signal shown in Fig. 5:

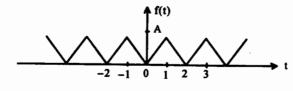


Fig. 5

- 5. Attempt any two parts of the following:
 - (a) Find the Laplace transform of function $x(t) = Ae^{-a|t|}$.
 - (b) Find the inverse Laplace transform of the function:

$$F(s) = \frac{(s+1) + 3e^{-4s}}{(s+2)(s+3)}$$

- (i) $ROC : Re\{s\} > 3$
- (ii) ROC: $Re\{s\} < 2$.
- (c) Consider the circuit shown in Fig. 6. Initially the switch is in position 1. At t = 0, the switch is moved to position 2.
 Find the expression for the current in the inductor L.

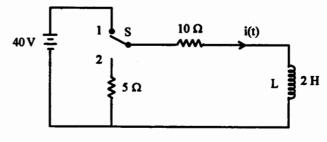


Fig. 6

- 6. Attempt any one part of the following:
 - (a) State space representation of a system is given by:

$$\dot{X}(t) = \begin{bmatrix} 0 & 1 \\ -2 & -3 \end{bmatrix} x(t) + \begin{bmatrix} 0 \\ 1 \end{bmatrix} u(t), y(t) = \begin{bmatrix} 1 & 0 \end{bmatrix} x(t)$$

where u(t) is the unit step input. All the initial conditions are zero. Find the time-response of the system.

(b) Develop the state model for the circuit shown in Fig. 7:

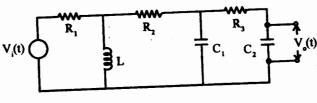


Fig. 7

- 7. Attempt any two parts of the following:
 - (a) Find the z-transform of $x[n] = \sin w_0 n u[n]$.
 - (b) Find the inverse z-transform of function:

$$X(z) = \frac{7z-23}{(z-3)(z-4)} |z| > 4$$

(c) Find the response of the following difference equation for step input. Assume zero initial conditions:

$$y[n] - \frac{5}{6}y[n-1] + \frac{1}{6}y[n-2] = x[n] - \frac{1}{2}x[n-1]$$

4200

7